How do orbits work?

Although we don’t encounter orbits day to day, it’s common knowledge that in space, satellites, asteroids, moons, planets and even stars move around other celestial bodies in a seemingly perpetual dance. With the right conditions, anything will fall into orbit around Earth. But what are those conditions?

A terrestrial orbit is actually a freefall along the curve of the Earth’s gravity that never touches down. The basic physics is the same for any planet or star, no matter its size. For an Earth-like planet, if an object is at the right altitude so that the thinner atmosphere doesn’t drag too much – around 160 kilometres (99 miles) up – and the acceleration is enough – about 28,080 kilometres (17,450 miles) per hour – it will continue to tumble around the planet.

To put a satellite or shuttle into a circular ‘high’ orbit, the craft makes use of boosters to go from low orbit into a transfer orbit to achieve the required height, technically known as its apogee. Left to its own devices, the spacecraft would fall into an elliptical orbit, so an additional rocket motor called an ‘apogee kick’ (AKM) fires at the appropriate point. This gives the vessel the extra boost it needs to remain at that specific altitude in a high orbit.