Background
Moments come into play when forces act on an object that has a fixed point. For example, turning a door handle, sitting on a seesaw or closing a pair of scissors. When forces are applied to these objects they rotate around their fixed point, also known as the pivot or fulcrum. The ‘moment’ is the turning effect of the force. It tells us how much the object will rotate and in which direction. Put simply, a moment is a twist. It is also known as torque.
In brief
To calculate a moment you need to know two things: the force (which is measured in Newtons) and the perpendicular distance between the pivot to the line of action of the force (which is measured in metres). When you multiply these two numbers you get the moment, which is measured in Newton metres (Nm).
For example, a seesaw has a pivot at the centre. If a person sits on one end, the moment can be calculated by taking the force of their weight on the seat and multiplying it by the distance from the seat to the middle of the seesaw.
Moments also have a direction, either clockwise or anticlockwise. When no one is sitting on the seesaw, the moments in both directions are equal. But when one person sits down the seesaw moves. If another person joins them by sitting on the other end, their body weight creates a moment in the opposite direction.
Moment (Nm) = Force (N) x distance (m)
Summary
Moments are the turning effects of forces. They have a direction, either clockwise or anticlockwise, and they can be calculated by multiplying the force exerted by its distance from the pivot.